Quantum phase estimation with arbitrary constant-precision phase shift operators

نویسندگان

  • Hamed Ahmadi
  • Chen-Fu Chiang
چکیده

While Quantum phase estimation (QPE) is at the core of many quantum algorithms known to date, its physical implementation (algorithms based on quantum Fourier transform (QFT) ) is highly constrained by the requirement of high-precision controlled phase shift operators, which remain difficult to realize. In this paper, we introduce an alternative approach to approximately implement QPE with arbitrary constant-precision controlled phase shift operators. The new quantum algorithm bridges the gap between QPE algorithms based on QFT and Kitaev’s original approach. For approximating the eigenphase precise to the nth bit, Kitaev’s original approach does not require any controlled phase shift operator. In contrast, QPE algorithms based on QFT or approximate QFT require controlled phase shift operators with precision of at least Pi/2n. The new approach fills the gap and requires only arbitrary constant-precision controlled phase shift operators. From a physical implementation viewpoint, the new algorithm outperforms Kitaev’s approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements

We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit, that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can obtain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our...

متن کامل

Phase-shift amplification for precision measurements without nonclassical states

The quantum nature of physical processes limits how precisely some quantities can be measured. In this context, the detection of phase shifts is one of the most sensitive methods for determining very diverse physical magnitudes. Optimal phase-shift measurements are of importance to many areas, including precision spectroscopy and metrology, for instance. The quantum limits to phase-shift measur...

متن کامل

Quantum Algorithms

Quantum computers use the quantum interference of diierent computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. A common pattern underpinning quantum algorithms can be identiied when quantum computation is viewed as multi-particle interference. We use this approach to review (and improve) some of the existing quantum algorithms and to show how they ar...

متن کامل

ua nt - p h / 97 08 01 6 v 1 8 A ug 1 99 7 Quantum Algorithms Revisited

Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. A common pattern underpinning quantum algorithms can be identified when quantum computation is viewed as multi-particle interference. We use this approach to review (and improve) some of the existing quantum algorithms and to show how they ...

متن کامل

ar X iv : 1 31 0 . 49 59 v 3 [ qu an t - ph ] 1 0 A ug 2 01 4 Quantum - enhanced metrology for multiple phase estima - tion with noise

We present a general quantum metrology framework to study the simultaneous estimation of multiple phases in the presence of noise as a discretized model for phase imaging. This approach can lead to nontrivial bounds of the precision for multiphase estimation. Our results show that simultaneous estimation (SE) of multiple phases is always better than individual estimation (IE) of each phase even...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information & Computation

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012